home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/bessel_K1.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_exp.h>
- #include <gsl/gsl_sf_bessel.h>
-
- #include "error.h"
-
- #include "chebyshev.h"
- #include "cheb_eval.c"
-
- /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
-
- /* based on SLATEC besk1(), besk1e() */
-
- /* chebyshev expansions
-
- series for bk1 on the interval 0. to 4.00000d+00
- with weighted error 7.02e-18
- log weighted error 17.15
- significant figures required 16.73
- decimal places required 17.67
-
- series for ak1 on the interval 1.25000d-01 to 5.00000d-01
- with weighted error 6.06e-17
- log weighted error 16.22
- significant figures required 15.41
- decimal places required 16.83
-
- series for ak12 on the interval 0. to 1.25000d-01
- with weighted error 2.58e-17
- log weighted error 16.59
- significant figures required 15.22
- decimal places required 17.16
- */
-
- static double bk1_data[11] = {
- 0.0253002273389477705,
- -0.3531559607765448760,
- -0.1226111808226571480,
- -0.0069757238596398643,
- -0.0001730288957513052,
- -0.0000024334061415659,
- -0.0000000221338763073,
- -0.0000000001411488392,
- -0.0000000000006666901,
- -0.0000000000000024274,
- -0.0000000000000000070
- };
-
- static cheb_series bk1_cs = {
- bk1_data,
- 10,
- -1, 1,
- 8
- };
-
- static double ak1_data[17] = {
- 0.27443134069738830,
- 0.07571989953199368,
- -0.00144105155647540,
- 0.00006650116955125,
- -0.00000436998470952,
- 0.00000035402774997,
- -0.00000003311163779,
- 0.00000000344597758,
- -0.00000000038989323,
- 0.00000000004720819,
- -0.00000000000604783,
- 0.00000000000081284,
- -0.00000000000011386,
- 0.00000000000001654,
- -0.00000000000000248,
- 0.00000000000000038,
- -0.00000000000000006
- };
- static cheb_series ak1_cs = {
- ak1_data,
- 16,
- -1, 1,
- 9
- };
-
- static double ak12_data[14] = {
- 0.06379308343739001,
- 0.02832887813049721,
- -0.00024753706739052,
- 0.00000577197245160,
- -0.00000020689392195,
- 0.00000000973998344,
- -0.00000000055853361,
- 0.00000000003732996,
- -0.00000000000282505,
- 0.00000000000023720,
- -0.00000000000002176,
- 0.00000000000000215,
- -0.00000000000000022,
- 0.00000000000000002
- };
- static cheb_series ak12_cs = {
- ak12_data,
- 13,
- -1, 1,
- 7
- };
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
- int gsl_sf_bessel_K1_scaled_e(const double x, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(x <= 0.0) {
- DOMAIN_ERROR(result);
- }
- else if(x < 2.0*GSL_DBL_MIN) {
- OVERFLOW_ERROR(result);
- }
- else if(x <= 2.0) {
- const double lx = log(x);
- const double ex = exp(x);
- int stat_I1;
- gsl_sf_result I1;
- gsl_sf_result c;
- cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);
- stat_I1 = gsl_sf_bessel_I1_e(x, &I1);
- result->val = ex * ((lx-M_LN2)*I1.val + (0.75 + c.val)/x);
- result->err = ex * (c.err/x + fabs(lx)*I1.err);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return stat_I1;
- }
- else if(x <= 8.0) {
- const double sx = sqrt(x);
- gsl_sf_result c;
- cheb_eval_e(&ak1_cs, (16.0/x-5.0)/3.0, &c);
- result->val = (1.25 + c.val) / sx;
- result->err = c.err / sx;
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- const double sx = sqrt(x);
- gsl_sf_result c;
- cheb_eval_e(&ak12_cs, 16.0/x-1.0, &c);
- result->val = (1.25 + c.val) / sx;
- result->err = c.err / sx;
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- }
-
-
- int gsl_sf_bessel_K1_e(const double x, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(x <= 0.0) {
- DOMAIN_ERROR(result);
- }
- else if(x < 2.0*GSL_DBL_MIN) {
- OVERFLOW_ERROR(result);
- }
- else if(x <= 2.0) {
- const double lx = log(x);
- int stat_I1;
- gsl_sf_result I1;
- gsl_sf_result c;
- cheb_eval_e(&bk1_cs, 0.5*x*x-1.0, &c);
- stat_I1 = gsl_sf_bessel_I1_e(x, &I1);
- result->val = (lx-M_LN2)*I1.val + (0.75 + c.val)/x;
- result->err = c.err/x + fabs(lx)*I1.err;
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return stat_I1;
- }
- else {
- gsl_sf_result K1_scaled;
- int stat_K1 = gsl_sf_bessel_K1_scaled_e(x, &K1_scaled);
- int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0,
- K1_scaled.val, K1_scaled.err,
- result);
- result->err = fabs(result->val) * (GSL_DBL_EPSILON*fabs(x) + K1_scaled.err/K1_scaled.val);
- return GSL_ERROR_SELECT_2(stat_e, stat_K1);
- }
- }
-
- /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
-
- #include "eval.h"
-
- double gsl_sf_bessel_K1_scaled(const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_K1_scaled_e(x, &result));
- }
-
- double gsl_sf_bessel_K1(const double x)
- {
- EVAL_RESULT(gsl_sf_bessel_K1_e(x, &result));
- }
-